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Abstract Using single-molecule manipulations or sudden
changes in solvent, it is possible to introduce knotted-loops
(or “tangles”) in open linear polymers. It is still unclear how
these tangles relax, and in particular, whether it is possible to
trap knots locally by adopting very compact loop conforma-
tions. Here, we use steered molecular dynamics simulations
to study a highly stressed polyethylene chain with three dif-
ferent knot topologies. Starting from stressed configurations,
unknotting events are recognized as leading to sudden tran-
sitions in overcrossing number. By means of a soft compres-
sing external force, we show that: (1) tangles with different
complexities can be unknotted and (2) the potential energy
decreases in a way that suggests that a similar relaxation
mechanism might be at work for all the tested loop topolo-
gies.

Keywords Polymer knots · Polymer stretching · Steered
molecular dynamics · Knot localization

1 Introduction

A mathematical knot is a closed loop with a permanent topo-
logical constraint due to self-entanglement; its unknotting
is prevented by disallowing loop self-intersections. In open
loops, the constraint becomes transient, though it may persist
for a long time in a real chain. In this work, we consider tran-
sient entanglements in linear polymers, referred to as one-

Contribution to the Serafín Fraga Memorial Issue.

G. A. Arteca (B)
Département de Chimie et Biochimie and Biomolecular
Sciences Programme, Laurentian University,
Ramsey Lake Road, Sudbury, ON, Canada P3E 2C6
e-mail: gustavo@laurentienne.ca

dimensional (1D) tangles, “ open knots”, or “ knotted-loops”
[1]. The formation of 1D tangles is not a rare event. In fact,
the probability of self-knotting increases as 1−e−an , where n
is the number of monomers [2]. Open knots have been seen
in isolated [3,4] and externally driven polymers [5,6], and
also in macroscopic metalic chains [7,8]. Local knotting is
also facilitated by diffusion within compact conformations,
such as those adopted by a chain in a poor solvent [4] or when
confined to small spaces [9,10].

Once a 1D tangle is formed, the locally knotted-loop may
collapse to a very small size if the rest of chain swells in
a good solvent [11]. Similarly, DNA can be tied into knots
using optical tweezers; a sustained external tension produces
highly localized 1D tangles [5,6]. It has been conjectured
that rapid switches in solvent quality may be sufficient to
trap a tight tangle within a long chain [11,12]. Yet, tight
knots (e.g., in DNA chains) undergo thermal diffusion and
can be remarkably mobile [5,7]. The dynamics of knot loca-
lization is also known to be a key factor to understand the
change in gel electrophoretic velocities when DNA knots
of various topological complexities are subject to weak and
strong electric fields [13]. Under a strong field, simpler knots
are more easily deformed and elongated, thereby migrating
more easily in the polymer network of an agar gel [13].

For self-attracting ring homopolymers, knot delocaliza-
tion is expected in the globular regime, while a weak knot
localization is expected at the θ -transition [14]. Results from
shaken hanging chains also show that tight knots can form
and disappear spontaneously, sliding and unknotting with an
average time τU ∼ n2 that is consistent with the diffusive
behaviour of an n-bead chain [5,15]. Simulations also hint
at distinct relaxation behaviours: whereas the equilibrium
relaxation time of closed loops appears insensitive to the
knot type K [16], differences occur whenever the polymer is
allowed to relax after cutting the knot [17]. It thus appears
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that, by releasing the topological constraint, any excess free
energy may be dissipated through nonequilibrium motions
with time scales that depend on the loop topology, i.e., the
original “knot type K ” of the K -tangle [17]. Here, we con-
sider a related problem, namely, the quasi-equilibrium rela-
xation of a tight tangle driven under conditions that simulate
the external steering of an atomic-force microscope (AFM)
tip or optical tweezers [18,19]. Two main issues are addres-
sed: (a) the conditions under which a highly stressed knot
could be trapped locally for a significant amount of time,
and (b) whether this trapping is affected by the knot type in
a one-dimensional K -tangle.

We study grafted polyethylene knotted-loops subject to
periodic external perturbations. Given that this polymer has
weak self-interactions, we expect knot relaxation to be mainly
controlled by the energy flow induced by the mechanical
force. Our approach applies the “soft” steered molecular
dynamics (SSMD) algorithm [18,20,21] on tight loops in
various topologies. In this simulation protocol, chains evolve
under quasi-equilibrium conditions while applying periodic
“pulls” or “pushes” on a single chain bond. This process
allows for internal energy redistribution, while letting chains
explore a range of rearrangements including those leading to
knot swelling, diffusion, and unknotting. We show below that
a weak compression elicits an unknotting transition common
to many knots.

2 Protocols for steered compression dynamics
and polymer shape analysis

We follow the compression of grafted K -tangles, found
initially in very tight conformations. Three cases are com-
pared: (a) the 31-tangle (i.e., a “trefoil” knotted-loop), (b)
the 41-tangle (a “figure-8” twist knot), and (c) the 52-tangle
(also a twist knotted-loop). We have considered chains that,
whenever stress is absent, adopt similar energies for all acces-
sible topologies (including the unknot). For this reason, we
use 90-carbon polyethylene chains, C90H182; this number of
carbon atoms ensures stable (i.e., not self-unknotting) and
nearly degenerate unstressed configurations for the three K -
tangles. (Shorter chains would be too stressed and may unk-
not through phantom crossings [22,23] or bond breaking
[24], depending on how forces are modelled.) The unstres-
sed tangles were generated by the protocol in Ref. [21].
From these, we derive tight loops by inducing an exter-
nally driven stretching transition [21]. The initial conformers
appear in Fig. 1; they have comparable end-to-end distances
hee = ||r(C1) − r(C90)||, yet quite different initial potential
energies. In this work, we confine ourselves to these parti-
cular three topologies because they are the only one that can
be produced on a C90 chain; comparing more complex knots
would require longer chains.

Fig. 1 Starting configurations for the end-grafted C90H182 polyethy-
lene K -tangles considered in this work (for clarity, hydrogen atoms are
omitted). The tethers have a length consistent with a highly stressed
central knotted-loop with a minimal mean size. The hee = ||r(C1) −
r(C90)|| end-to-end distances are given below. These conformers are
subject to periodic compressing perturbations at the C89 − C90 bond
using the soft steered molecular dynamics (SSMD) protocol. Over time,
stress is removed from all tangles and unknotting may take place with
a probability that depends on the knot type

2.1 Unknotting transitions during compression

The choice of the five-crossing 52-tangle is dictated by the
fact it has two possible unknotting channels. The unknotting
transition in a open chain with a knotted-tangle is of course
not defined unambiguously and it is a matter of interesting
debate in the literature [25,26]. In our case, we have con-
sidered to two possible definitions to characterize the onset
of “unknotting” in the present tangles. The first approach
(illustrated in Fig. 2) is simple and intuitive, and it can be
applied to trajectories that begin from tightly knotted con-
figurations. As shown in Fig. 2, we can partition the space
using the plane perpendicular to the last bond vector, denoted
by vA = r(C90) − r(C89). Using the starting configuration,
we define the half-space containing the knotted loop to be
“above” the latter plane. We can thus define an “unknotting
event” whenever the nearest neighbour beads to vA on the
loop appear under the plane (cf. Fig. 2). Alternatively, we
have used a sudden variation in a convenient entanglement
descriptor as an indicator of an unknotting event (see below).

Using thus the definition illustrated in Fig. 2, the symme-
try of a torus 51-tangle will produce a 51 → 31 transition
if either end of the loop is unknotted, that is, if we “switch”
the handedness of the first and fifth crossings in an oriented
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Fig. 2 Schematic description of an “unknotting” event in an open chain
polymer. As long as we are starting from a tight-knotted configuration
(e.g., those in Fig. 1), the unknotting transition can be recognized by the
change in relative location of the nearest neighbour polymer beads with
respect to the plane perpendicular to the last bond vector vA. With this
definition, the left-hand side scheme is “knotted,” whereas the right-
hand side configuration will be “unknotted”

Fig. 3 Different unknotting transitions in the 52-tangle depending on
which terminal bond crosses over a loop in an oriented chain. If the initial
terminus crosses its nearest loop (crossing “a”), the 52 decays directly
to a 01-tangle. In contrast, the last terminus produces a 31-tangle if the
crossing “b” is eliminated in the sense defined in Fig. 2. This 52 → 31
transition can then be followed by a second transition 31 → 01 in some
cases. Note that a torus 51-tangle would decay symmetrically to only
31-tangles by undoing either terminal loop

chain. In contrast, the twist 52-tangle is asymmetric and will
produce two distinct “unknotting transitions”, as explained
in Fig. 3. Note thus that if the C1-terminus is unknotted first
(cf. Figs. 1 and 3), there will be an initial 52 → 31 transition.
On the other hand, a 52 → 01 transition takes place when
unknotting via the C90-terminus. A 52-loop “decayed” to a
31-tangle (right-hand-side top diagram in Fig. 3) might in turn
evolve into a 01-tangle (or “unknot”) by further relaxation.
By choosing the 52-tangle of C90H182, we can use the expec-
ted similar probability of the two unknotting channels as a
control for the quality of the sampling during the MD simu-
lations. Below, we discuss how these transitions can be reco-
gnized using a shape descriptor of polymer entanglement.

2.2 Steered molecular dynamics compressions

The initial conformers are in the stressed (or Pincus) regime
[27,28], where the potential energy rises quadratically over

the ground-state fluctuations. At maximum stress, the struc-
tures in Fig. 1 should include two long tethers and a collapsed
region made of C* short hairpins, with C* the minimum num-
ber of crossings for the compact knotted-loop. Considering
that a short hairpin requires ca. 10 carbon atoms [22,23], the
tether length can be estimated as ntether ≈ 1/2[n − 10C∗],
where n is the total number of atoms in the chain. For an
n = 90 chain to form a strongly collapsed 52-tangle (i.e.,
C* = 5), we would then expect two tethers with ntether ≈ 20.
This estimate matches the structures in Fig. 1, and is therefore
consistent with our claim that all the initial conformations in
that figure are highly stressed (or “tight”) K -tangles.

The algorithm for the SSMD compression differs from
other MD approaches that apply a constant-force or constant-
velocity pull (or push) at a point of the chain [27,28]. Our
present protocol resembles the one used in Refs. [17–19],
and can be summarized as follows:

(1) First compressing step: The K -tangles are modelled in
the MM2 force field [29], with the C1-atom permanently
anchored. Initial atomic velocities are assigned from a
Maxwell–Boltzmann distribution at T0 = 300 K; the
temperature is kept constant with a simulated Berend-
sen thermal bath at T0 [30]. To start an MD run, we
introduce a slight compression on the initial conforma-
tion by shortening the last chain bond (C89 − C90) to
1.3 Å, while re-accommodating the H-atoms bonded to
C90. After the compression, the C90-atom is “anchored”
(i.e., it is “frozen” with respect to molecular dynamics).

(2) Relaxation step: The compressed doubly anchored chain
built in (1) is then allowed to evolve for � = 5 ps
coupled to the thermostat (using a relaxation constant
of 100 fs and an integration step of 1 fs). During this
period, the chain responds to the “soft” push by rear-
ranging and redistributing the excess energy. Since the
tangles start from a high-energy stretched conforma-
tion, the compression should, on average, reduce the
potential energy. At high stress, the period � = 5 ps is
too short for full re-equilibration at 300 K. In contrast,
at sufficiently low stress levels, � is sufficient to dissi-
pate any sharp peak in potential energy introduced by
the external compression of a single bond [18].

(3) Periodic compression/relaxation steps: After the �

period, a new perturbation is introduced by shortening
again the C89 −C90 bond on the last conformer genera-
ted in (2). The local geometry for the rest of the chain,
and all atomic velocities, are kept the same as those at
t = � . This step ensures dynamic continuity while
mimicking the effect of an external force acting on
a single bond. Note that the direction of compression
would have changed in general with respect to that in
(1). After restoring the C90 anchoring, the new chain
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conformation is allowed to evolve for another � period;
both C1 and C90 do not move, but they affect the dyna-
mic behaviour of all atoms attached to them. The proce-
dure continues as a sequence of compression/relaxation
steps for a period sufficiently long so as to remove all
stress and reach the equilibrium energy at 300 K.

For the three tight K -tangles, 1,000 ps-SSMD trajectories
are sufficient to remove all stress. Conformational snapshots
are selected every 1 ps along each MD run, including the com-
pression steps. The average behaviour is estimated from an
ensemble of 20 independent SSMD runs, each starting from
a different random distribution of initial atomic velocities.

2.3 Descriptors of polymer self-entanglement

We monitor the K -tangle relaxations (including their pos-
sible unknotting) using polymer shape descriptors. In cases
of external steering, mean size descriptors (e.g., the radius
of gyration) may be inadequate as they do not distinguish
among many configurational rearrangements [20]. Descrip-
tors of chain entanglement derived from knot-theory provide
a better tool [31–34].

Self-entanglement complexity can be expressed in terms
of {AN }, the probability distribution of projected crossings
(or “overcrossings”) of backbone bonds [31]. The mean over-
crossing (or “average crossing”) number N̄ is the number
of projected bond–bond crossings averaged over all three-
dimensional rigid projections of a given conformation [31].
Formally, we can write:

N̄ =
maxN∑

N=0

N AN = (4π)−1
∫

S2

N (r)dS(r), (1)

where N (r) is the crossing number for a projection to a plane
tangent to the unit sphere S2 at r, with a surface element
dS(r). In practice, we evaluate Eq. (1) using a large set of
uniformly distributed random projections to planes tangent to
the smallest sphere enclosing the K -tangle [18,20,21,31,33].

The N̄ descriptor belongs to a class of quasi-topological
invariants of knot-type complexity [32–34]. and it correla-
tes with observables such as gel velocities or sedimenta-
tion rates of knotted DNA [28]. Previously, we have used
this descriptor to study free polymer dynamics (e.g., protein
folding–unfolding transitions) [33,35], as well as the stret-
ching dynamics of grafted peptides [21] and polyethylene
31-tangles [20]. Here, we monitor the time evolution of N̄K (t)
for the reverse process, i.e., the possible unknotting of a stret-
ched K -tangle due to a compressing bias. For the confor-
mers in Fig. 1, the initial values are: N̄31(0) = 5.99 ± 0.05,
N̄41(0) = 8.61 ± 0.09, and N̄52(0) = 10.09 ± 0.07. From
these values, we can expect the following possible changes
in N̄ :

(a) If a chain buckles under compression without relaxing
the knot, the mean overcrossing number should remain
nearly constant since projected crossings between long
tethers contribute little to N̄ .

(b) If the K -tangle relaxes and swells under compression,
we should expect a shortening of the tethers and there-
fore an increase in N̄ values.

(c) A relaxation leading to unknotting will appear as a sharp
decrease in N̄ ; in particular, a 52 → 01 transition should
produce the maximum change in descriptor values. The
52 → 31 decay mode would elicit a smaller transition
in N̄ .

Indeed, we propose the notion that some of these changes in
N̄ should be sharp enough to provide an operational criterion
to recognize an “unknotting transition.” This idea is illustra-
ted well in Fig. 4, which shows a typical example of a SSMD
trajectory with clear transitions in N̄ value. The sharp decre-
ase in N̄ (at the point indicated with an asterisk, t ≈ 725 ps) is
probably the best indicator of a 52 → 31 “unfolding event.”
Moreover, a second large oscillation observed at t ≈ 900 ps
matches the onset of a 31 → 01 transition (defined with the
criterion in Fig. 2). In practice, as long as one begins from
a tight-knotted loop, we can assign reliably the first sharp
drop in N̄ value to an unknotting transition.

In the next sections, we discuss the compression of tight
tangles and describe their mechanism in terms of energy rela-
xation and variations in mean overcrossing number. In nearly
all cases, the unknotting in tight K -tangles defined operatio-
nally by a sudden change in N̄ coincides well with the defi-
nition based on the relative location of the last bond vector
and its nearest neighbours on a loop (cf. Fig. 2).

3 Steered relaxation and unknotting of tight K -tangles

The initial structures in Fig. 1 span a large energy range.
If E (K )

pot (t) denotes the potential energy at 300 K and time t for
a chain initially found as a K -tangle, then we
have: E (52)

pot (0) = 721 kcal/mol, E (41)
pot (0) = 445 kcal/mol,

E (31)
pot (0) = 371 kcal/mol. We find that an external compres-

sion always produces a relaxation, i.e., a removal of stress
leading to a systematic decrease in E (K )

pot (t) over time.

Figure 5 overlaps the E (K )
pot (t) curves for 20 SSMD

trajectories of each K -tangle. All chains reach a common
equilibrium energy E (chains)

eq at t = 1, 000 ps, estimated as

E (chains)
eq = 310±20 kcal/mol and denoted by the right-hand

side error bar. As control, we have computed the average
potential energy < Epot > at 300 K for an unknotted C90H182

chain at equilibrium, as well as for unstressed knotted-loops.
Both cases give< Epot >= 315 ± 25 kcal/mol, which agrees

with E (chains)
eq . This result shows that stress is fully removed
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Fig. 4 “Unknotting events” as sudden transitions in the mean over-
crossing number N̄ . The diagram indicates a MD-trajectory for the
steered compression of an initially tight grafted 52-tangle (cf. Fig. 1).
The central “knotted loop” is swollen up until t ≈ 700 ps, leading to
a small increase in N̄ . The sharp decrease in N̄ at the point indicated
by an asterisk (t ≈ 725 ps) is taken, by definition, as an unknotting
event; in this case, it corresponds to a 52 → 31 transition. Its further
31 → 01 transition is harder to recognize, but it coincides with another
large oscillation in N̄ at t ≈ 900 ps

Fig. 5 Decrease of potential energy Epot(t) during the steered rela-
xation of polyethylene K -tangles. The right-hand side error bar cor-
responds to the energy fluctuations at equilibrium for the unknot and
unstressed knots. The t (K )

eq -values correspond to the time where the K -

tangle reaches equilibrium. The values on top show the t (K ,K ′)-values,
corresponding to the time it takes a K -knot to reach the initial potential
energy of a less entangled K ′-knot. Using these values to shift the cor-
responding curves, it can easily be shown that Epot(t) follows a single
relaxation behaviour that is not dependent on the knot type (see text)

by the SSMD compressions. This also suggests that, regard-
less of the persistence of knotted-loops, no chain remains as
a tight knot when compressing polyethylene.

The potential energy decay can be characterized by the
time t (K )

eq needed by the K -tangle to reach full equilibration

in absence of stress, i.e., E (K )
pot (t (K )

eq ) = E (chains)
eq . These cha-

racteristic times are:

t (31)
eq = 285 ± 4 ps; t (41)

eq = 437 ± 4 ps;
t (52)
eq = 724 ± 4 ps, (2)

where error bars correspond to the ±20 kcal/mol fluctuation
in the E (chains)

eq value at 300 K. These values provide a bench-
mark to determine the time required for the onset of unknot-
ting.

The relaxation behaviour in Fig. 5 masks a number of dif-
ferent conformational responses. In all cases, we have obser-
ved that: (1) the K -tangles can persist in “knotted” form once
the stress is removed, and (2) unknotting transitions do take
place for all knot types. However, the probability of these
events depends on the initial loop topology.

Figure 6 superimposes the evolution in entanglement com-
plexity N̄ for the SSMD trajectories that conserve the initial
knot type. To the right, we indicate the fraction that these
trajectories represent within the total ensemble. The conser-
vation of loop topology can be recognized in the fact that
there are no sudden drops in N̄ values while compressing
the initial tight knot. A behaviour common to all knot types
emerges: the periodic compression removes the initial stress
by swelling the knots, thereby shortening the two tethers
and increasing the mean overcrossing number. A swelling
of the central loop occurs in all K -tangles. This increase

Fig. 6 Evolution of the entanglement complexity N̄ for SSMD tra-
jectories where the central loops remain knotted. The right-hand side
gives the unknotting frequency over 20 MD runs. Note that the more
entangled loops unknot more often. This behaviour results from having
chains of equal length, i.e., tethers whose lengths increase from the
52- to the 31-tangle
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Fig. 7 Mean overcrossing number N̄ for 20 SSMD runs for the 52-
tangle. The pattern shows that this knotted-loop has approximately the
same probability of sliding through the C1 or C90 termini. The C1-
sliding causes a 52 → 31 transition in 9 out of 20 trajectories; among
these, 4 trajectories simplify further by undergoing a 31 → 01 tran-

sition. Similarly, the C90-sliding causes a direct 52 → 01 transition
also in 9 out of 20 trajectories. As denoted in Fig. 6, two trajectories
conserve the initial 52-tangle. The results indicate that the 31-tangles
generated by the 52 → 31 transition share the same shape features as
intact (unstressed) 31-tangles at 1,000 ps

in N̄K (t) follows a similar pattern in all cases, although it
is slightly faster for 31-knots because the latter remove the
initial stress more rapidly. At the end of the trajectories, all K -
tangles are equally relaxed, and their differences in entangle-
ment complexity are those that characterize the equilibrium
values for the knotted-loops used as control at 300 K, i.e.,
N̄31 ≈ 8.1, N̄41 ≈ 9.5, N̄52 ≈ 11.0 at 1,000 ps.

In addition, we have observed evidence of knot mobility
after relaxation, with a varying degree of displacement of
the central loop either up or down the chain. However, our
trajectory ensemble is too limited to: (1) ascertain any distinct
trends in these motions that may depend on knot type and (2)
the temporal dependence law for the loop diffusion.

Given that the present chains have the same contour length,
their distinct unknotting probabilities correlate with diffe-
rences in the length of the initial tethers. Having shorter
tethers, the 52-tangle appears to unknot more easily and soon
after reaching the unstressed equilibrium configurations.

Figure 7 shows the pattern of unknotting transitions for the
52-tangle. After 600 ps, there are drops in the entanglement
descriptor; after the transitions, the N̄ values have large fluc-
tuations centred about N̄ ≈ 8, consistent with the formation
of grafted chains with the entanglement complexity of a rela-
xed 31-tangle. Even though our trajectory ensemble is small,
the observed distribution of “unknotting events” agrees well
with the notion that the initial 52-tangle should have a similar
probability of unknotting into a 01- or a 31-tangle. Among
the 18 trajectories leading to unknotting, we find nine transi-
tions to the unknot (52 → 01) and nine trajectories leading to

a trefoil (52 → 31). In turn, we find that the latter 31-tangles
have nearly equal probabilities to either remain as such or to
unknot further through a 31 → 01 transition (5/20 and 4/20,
respectively). This qualitatively correct pattern of relaxation
and unknotting suggests that, despite the small sample size,
the SSMD simulations can produce a reasonable survey of
the configurational space accessible to K -tangles.

We can now estimate the differences in unknotting times.
From the results in Fig. 7, we have computed the mean time
tU for the first unknotting transition. An analysis for all K -
tangles gives: tU (31) = 734 ± 34 ps (6 events), tU (41) =
814 ± 122 ps (14 events), and tU (52) = 819 ± 91 ps (18
events). These results do not yet represent the mean times
for unknotting at equilibrium (i.e., τU (K )) because diffe-
rent tangles start from slightly different levels of stress. We
correct for these differences using the t (K )

eq re-equilibration
times, thereby estimating the unknotting times as τU (K ) ≈
tU (K ) − t (K )

eq :

τU (31) = 449 ± 38 ps, τU (41) = 337 ± 126 ps,

τU (52) = 95 ± 95 ps. (3)

From Eq. (3), the 52-tangle appears to unknot in near syn-
chrony with the removal of stress. These results complement
previous work in the literature which found that unknot-
ting times increase with the number of essential crossings
for knots with the same knot size [17]. In our case, chains
have the same contour length and not the same knot size;
the knotted-loop sizes are determined by the level of stress
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conferred by the mechanical force. Under these conditions,
a more complex tangle can unknot faster once the external
stress has been fully removed, because it exhibits shorter
tethers at equilibrium.

4 Relaxation dynamics in the potential energy

Despite differences in stability and unknotting times, the
results in Figs. 5,6 and 7 show that an external steering leads
to a controlled removal of stress in these three polyethylene
tangles. The mechanism appears to involve the swelling of
the knotted-loop, a shortening of the tethers and the equili-
bration at an energy level indistinguishable from that of the
unknot. As shown below, the results in Fig. 5 also hint more
quantitatively at a relaxation behaviour that may depend little
on the knot type, at least in the case of the simplest topologies.

Based on these results, we conjecture that there seems to
be a unique energy relaxation function, i.e., one law for the
decay in the potential energy Epot(t) over time for at least
this class of short polyethylene K -tangles. We can check
the validity of this hypothesis because it implies that the
Epot(t)-functions for these K -tangles could be superimposed
by shifting the time scale. To this end, we introduce t (K ,K ′),
corresponding to the time it takes a K -tangle to reach the
initial potential energy of a K ′-tangle, i.e., E (K )

pot (t (K ,K ′)) =
E (K ′)

pot (0), with K ′ being a less entangled knot than K . The
relevant values are (cf. Fig. 5):

t (52,41) = 291 ± 4 ps, t (52,31) = 445 ± 4 ps,

t (41,31) = 146 ± 4 ps. (4)

If the relaxation were to follow a single law, then t (K ,K ′)

would provide the shift in time scale needed to derive the
potential energy of a K -knot from that of a less entangled
K ′-knot at time t :

E (K )
pot (t (K ,K ′) + t) = E (K ′)

pot (t), for all t ≥ 0. (5)

We can now consider the corresponding re-equilibration

times t (K )
eq and t (K ′)

eq , defined in Sect. 3 as E (K )
pot (t ≥ t (K )

eq ) =
E (K ′)

pot (t ≥ t (K ′)
eq ) ≈ E (chains)

eq . From this and Eq. (5), we
expect the relation:

t (K ,K ′) + t (K ′)
eq = t (K )

eq . (6)

This equality can be tested using the {t (K ,K ′), t (K )
eq } values

evaluated before. Using Eqs.(2) and (4), we obtain: t (52,41) +
t (41)
eq = 728 ± 8 ps, which matches well the independent

estimate t (52)
eq = 724 ± 4 ps. Similarly, the relation between

the 52- and 31-tangles gives: t (52,31) + t (31)
eq = 730 ± 8 ps,

which again agrees with t (52)
eq . For the 41- and 31-tangles we

get: t (41,31) + t (31)
eq = 431 ± 8 ps, also in agreement with

t (41)
eq = 437 ± 4 ps. Finally, we have verified that a shift by

the corresponding t (K ,K ′)-values allows us to superimpose
qualitatively the three entire potential energy curves in Fig. 5.

While Eq. (6) appears to be valid for tight K -tangles, other
relations supported by our results are probably not general.
For example, we have: t (41)

eq + t (31)
eq = 722 ± 8 ps, which also

matches the t (52)
eq -estimate. According to Eq. (6), we would

only expect: t (41)
eq + t (31)

eq = t (52)
eq +{t (41)

eq − t (41,31) − t (52,41)},
but the last term cancels out fortuitously in the present simu-
lations: t (41)

eq − t (41,31) − t (52,41) = 0 ± 8 ps. As far as we
know, there is no reason to believe that a relation such as
t (K ′)
eq ≈ t (K ,K ′) + t (K ′,K ′′) should not be valid for other tri-

plets of knots.

5 Conclusions

Simulations based on simple square-well potentials indicate
that knots and tangles can segregate their crossings into small
tight regions as a result of applying a constant stretching
force [36]. A similar collapse to tight knots is still obser-
ved as the dominant behaviour in more realistic potentials
and stretching protocols [20]. Under conditions of weak and
intermediate forces, the mean sizes of these knots follow the
same scaling laws that apply to linear polymers [36]. In our
case, we have considered the relaxation of some simple loops
in the tight knot regime where these laws do not apply; here,
the initial mean size is determined by the swollen nature of
the portion of the chain that is not knotted.

Starting from three different tight knots in polyethylene,
we have shown here that a controlled relaxation mediated by
a external force can undo a collapsed knotted-loop, remove
all excess potential energy stress, and eventually produce
unknotting. Our results support the validity of Eq. (6) and
suggest that a general law represented by Eq. (5) may be
valid for at least of subclass of knotted-loops with different
topologies. It remains to be seen whether a single simple
mechanism for the relaxation of collapsed loop segments is
observed in more complex knots. It could be possible that
a new relaxation mechanism is present in composite knots.
Exploring these interesting possibilities with a proper control
set requires, however, a new series of knotted-loops built
with longer polymers, because the present C90-polyethylene
chains can only sustain relaxed knotted-loops with up to five
essential crossings. More complex topologies will unknot
spontaneously in an unstressed C90-chain.

Our results provide a benchmark to test the influence of
other factors in the quasi-equilibrium relaxation of chains
with topological defects. For instance, a different behaviour
may occur when knotted-loops relax in the melt, as oppo-
sed to the present isolated chains. There is evidence that
topological constraints in the melt change the self-diffusion
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coefficient D and the relaxation time τ in the autocorrelation
function C = 〈R(t) · R(0)〉, where R(t) is the span vector
of a chain at time t [37]. Whereas an isolated n-monomer
chain with topological constraints behaves as a phantom
chain in the melt (i.e., Rouse-like scaling with D ∼ n−1

and τ ∼ n2), the presence of knots in the melt produces a
different behaviour (with approximate scaling D ∼ n−1.59

and τ ∼ n2.5) [37]. It is thus possible that inter-chain inter-
actions may change the relaxation behaviour of tight tangles.
Also, changes in composition (e.g., the introduction of stron-
ger monomer–monomer interactions) may modify the rela-
xation mechanism and stabilize tight K -tangles. These issues
will be addressed in future work.
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